Protein engineering of Saccharomyces cerevisiae transporter Pdr5p identifies key residues that impact Fusarium mycotoxin export and resistance to inhibition
نویسندگان
چکیده
Cereal infection by the broad host range fungal pathogen Fusarium graminearum is a significant global agricultural and food safety issue due to the deposition of mycotoxins within infected grains. Methods to study the intracellular effects of mycotoxins often use the baker's yeast model system (Saccharomyces cerevisiae); however, this organism has an efficient drug export network known as the pleiotropic drug resistance (PDR) network, which consists of a family of multidrug exporters. This study describes the first study that has evaluated the potential involvement of all known or putative ATP-binding cassette (ABC) transporters from the PDR network in exporting the F. graminearum trichothecene mycotoxins deoxynivalenol (DON) and 15-acetyl-deoxynivalenol (15A-DON) from living yeast cells. We found that Pdr5p appears to be the only transporter from the PDR network capable of exporting these mycotoxins. We engineered mutants of Pdr5p at two sites previously identified as important in determining substrate specificity and inhibitor susceptibility. These results indicate that it is possible to alter inhibitor insensitivity while maintaining the ability of Pdr5p to export the mycotoxins DON and 15A-DON, which may enable the development of resistance strategies to generate more Fusarium-tolerant crop plants.
منابع مشابه
Anticancer drugs, ionophoric peptides, and steroids as substrates of the yeast multidrug transporter Pdr5p.
Pdr5p is the yeast Saccharomyces cerevisiae ATP-binding cassette transporter conferring resistance to several unrelated drugs. Its high overproduction in Pdr1p transcription factor mutants allows us to study the molecular mechanism of multidrug transport and substrate specificity. We have developed new in vivo and in vitro assays of Pdr5p-mediated drug transport. We show that in spite of little...
متن کاملInvolvement of Saccharomyces cerevisiae Pdr5p ATP-binding cassette transporter in calcium homeostasis.
Deletion of PDR5 gene (Deltapdr5) in Saccharomyces cerevisiae led to increased resistance to calcium. The cellular Ca2+ level in the presence of high calcium as estimated by reporter assay in Deltapdr5 cells was significantly lower than that in wild-type cells. Membrane Pdr5p levels diminished rapidly during incubation with high calcium in a manner dependent on calcineurin and Pep4p, suggesting...
متن کاملThree-dimensional reconstruction of the Saccharomyces cerevisiae multidrug resistance protein Pdr5p.
Pdr5p, the major multidrug exporter in Saccharomyces cerevisiae, is a member of the ATP-binding cassette (ABC) superfamily. Pdr5p shares similar mechanisms of substrate recognition and transport with the human MDR1-Pgp, despite an inverted topology of transmembrane and ATP-binding domains. The hexahistidine-tagged Pdr5p multidrug transporter was highly overexpressed in yeast strains where other...
متن کاملThe yeast multidrug resistance pump, Pdr5p, confers reduced drug resistance in erg mutants of Saccharomyces cerevisiae.
Mutants of Saccharomyces cerevisiae bearing lesions in the ergosterol biosynthetic pathway exhibit a pleiotropic drug-sensitive phenotype. This has been reported to result from an increased permeability of the membranes of the mutant strains to different drugs. As disruption of the yeast multidrug resistance protein, Pdr5p, results in a similar pleiotropic drug-sensitive phenotype, the possibil...
متن کاملEfflux-mediated resistance to fluconazole could be modulated by sterol homeostasis in Saccharomyces cerevisiae.
Saccharomyces cerevisiae has long been used as a model organism in the study of the ergosterol pathway and its inhibitors. The Pdr5 protein (Pdr5p), an ATP binding cassette transporter, plays an important role in active efflux of azole antifungals and therefore in azole sensitivity and resistance in S. cerevisiae. We have identified the Fluconazole Dominant Resistance-1 (FDR-1) mutant, which ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2016